Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mycorrhiza ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664239

RESUMO

Despite being the second largest family of flowering plants, orchids represent community structure variation in plant-microbial associations, contributes to niche partitioning in metacommunity assemblages. Yet, mycorrhizal communities and interactions remain unknown for orchids that are highly specialized or even obligated in their associations with their mycorrhizal partners. In this study, we sought to compare orchid mycorrhizal fungal (OMF) communities of three co-occurring hemiepiphytic Vanilla species (V. hartii, V. pompona, and V. trigonocarpa) in tropical forests of Costa Rica by addressing the identity of their OMF communities across species, root types, and populations, using high-throughput sequencing. Sequencing the nuclear ribosomal internal transcribed spacer (nrITS) yielded 299 fungal Operational Taxonomic Units (OTUs) from 193 root samples. We showed distinct segregation in the putative OMF (pOMF) communities of the three coexisting Vanilla hosts. We also found that mycorrhizal communities associated with the rare V. hartii varied among populations. Furthermore, we identified Tulasnellaceae and Ceratobasidiaceae as dominant pOMF families in terrestrial roots of the three Vanilla species. In contrast, the epiphytic roots were mainly dominated by OTUs belonging to the Atractiellales and Serendipitaceae. Furthermore, the pOMF communities differed significantly across populations of the widespread V. trigonocarpa and showed patterns of distance decay in similarity. This is the first report of different pOMF communities detected in roots of wild co-occurring Vanilla species using high-throughput sequencing, which provides evidence that three coexisting Vanilla species and their root types exhibited pOMF niche partitioning, and that the rare and widespread Vanilla hosts displayed diverse mycorrhizal preferences.

2.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198737

RESUMO

Despite intensive studies on plant functional traits, the intraspecific variation and their co-variation at the multi-scale remains poorly studied, which holds the potential to unveil plant responses to changing environmental conditions. In this study, intraspecific variations of 16 leaf functional traits of a common fig species, Ficus tinctoria G. Frost., were investigated in relation to different scales: habitat types (hemiepiphytic and terrestrial), growth stages (small, medium and large) and tree crown positions (upper, middle and lower) in Xishuangbanna, Southwest China. Remarkable intraspecific variation was observed in leaf functional traits, which was mainly influenced by tree crown position, growth stage and their interaction. Stable nitrogen isotope (δ15N) and leaf area (LA) showed large variations, while stable carbon isotope (δ13C), stomata width and leaf water content showed relatively small variations, suggesting that light- and nitrogen-use strategies of F. tinctoria were plastic, while the water-use strategies have relatively low plasticity. The crown layers are formed with the growth of figs, and leaves in the lower crown increase their chlorophyll concentration and LA to improve the light energy conversion efficiency and the ability to capture weak light. Meanwhile, leaves in the upper crown increase the water-use efficiency to maintain their carbon assimilation. Moreover, hemiepiphytic medium (transitional stage) and large (free-standing stage) figs exhibited more significant trait differentiation (chlorophyll concentration, δ13C, stomata density, etc.) within the crown positions, and stronger trait co-variation compared with their terrestrial counterparts. This pattern demonstrates their acclimation to the changing microhabitats formed by their hemiepiphytic life history. Our study emphasizes the importance of multi-scaled intraspecific variation and co-variation in trait-based strategies of hemiepiphyte and terrestrial F. tinctoria, which facilitate them to cope with different environmental conditions.


Assuntos
Ficus , Ficus/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Clorofila , Aclimatação , Árvores/fisiologia , Água
3.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068640

RESUMO

Numerous plant functional traits of ecophysiology and morphology associated with an epiphytic life history have promoted relatively high rates of evolutionary diversification and ecological success in tropical families such as the Orchidaeae, Polypodiaceae, Bromeliaceae, and Cactaceae. Epiphytic life histories are relatively uncommon in the Araceae and rare in the Cyclanthaceae which lack key functional traits for epiphytism. Only two lineages of Neotropical Araceae, Anthurium and Philodendron, include examples of epiphyte life histories. The evolution of a hemiepiphytic life history represented an important development for tropical Araceae by providing functional traits that have greatly expanded opportunities for adaptive radiation and ecological success as indicated by species richness and frequency of occurrence. The key adaptive trait allowing the diversification of hemiepiphytic Araceae was the development of heteroblastic growth of leaves and stems. Although hemiepiphytic life histories are present in the Cyclanthaceae, the family has undergone only modest speciation and limited ecological success in both its epiphytes and hemiepiphytes. Extensive sampling of more than 4600 trees from primary forest on four soil groups in northeastern Costa Rica have found a modest diversity of 15 species of epiphytic Araceae but only two species of epiphytic Cyclanthaceae. In contrast, 38 species of hemiepiphytic Araceae and 5 species of hemiepiphytic Cyclanthaceae were sampled, indicating relatively limited adaptive radiation of hemiepiphytic Cyclanthaceae and lower ecological success. Using summed values of frequency of occurrence as a measure of ecological success, epiphytic Araceae were 18 to 42 times more frequent than epiphytic Cyclanthaceae in swamp, alluvial, and residual soil forests. Summed frequencies of occurrence of hemiepiphytic Araceae were 7 to 13 times higher than those of hemiepiphytic Cyclanthaceae. The four soil groups were similar in their floristic composition of epiphytic and hemiepiphytic Araceae and Cyclanthaceae, but the frequencies of occurrence of both epiphytes and hemiepiphytes were, with few exceptions, highest on swamp soil plots, with alluvial soil plots slightly less favorable.

4.
Ann Bot ; 132(3): 513-522, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37642212

RESUMO

BACKGROUND AND AIMS: Substrate preferences are often treated as species traits and are used to distinguish different habits, i.e. an epiphytic, lithophytic or terrestrial habit. Such a categorization, however, ignores substantial intraspecific variation. An approach that takes biological variability within a species into account is needed. METHODS: We focused on four large genera of ferns and lycophytes and found relevant information in >500 sources, such as online databases, checklists, floras and species descriptions. Translating textual information into a quantitative index, we quantified the propensity to grow on either substrate as a continuous trait for 1475 species. KEY RESULTS: Only a minority of species exhibited strict substrate fidelity, but a majority of them showed clear habitat preferences. The relative frequencies of intermediates between strict lithophytes, epiphytes and terrestrials does not support the frequent notion of ecological similarity of the lithophytic and epiphytic habitat. CONCLUSIONS: The compiled data are useful immediately for ecological and evolutionary studies with the focal taxa. More importantly, we propose the replacement of the concept of distinct habits with one of gradual differences. This should have a profound impact on any such study with plants in general.


Assuntos
Gleiquênias , Ecossistema , Evolução Biológica
5.
PeerJ ; 11: e15557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483965

RESUMO

The Cyclanthaceae comprise a relatively small family of about 230 species and 12 genera in the Pandanales that is widespread in wet Neotropical forests. The great majority of species can be divided into three growth forms (understory herbs, epiphytes, and root-climbing hemiepiphytes) that share functional traits with similar growth forms present in the Araceae, a member of the Alismatales and not closely related. Our objectives were first to characterize the diversity, functional growth forms, and ecological traits of Cyclanthaceae at the La Selva Biological Station. Specific functional leaf and canopy traits of terrestrial herbs and epiphytes are very similar and associated with ecological success in both families. We further examined the functional traits of root-climbing hemiepiphytes, a specialized growth form that links the two families but rare in other families and argue that their specialized functional traits allow them to be considered as a distinct functional growth form. A key trait in distinguishing hemiepiphytes which are rare outside of the Cyclanthaceae and Araceae is the severance of the main stem hydraulic connection to the soil early in plant development. We used field data to examine the possible evolutionary pathways of developmental and ecological transition from terrestrial to hemiepiphyte growth forms. The broader ecological success of hemiepiphytic Araceae compared to Cyclanthaceae is hypothesized to result from the presence of heteroblasty in developing stems and leaves which allows more efficient utilization of complex canopy light environments of wet tropical forests.


Assuntos
Araceae , Árvores , Florestas
6.
Plant Cell Environ ; 44(6): 1741-1755, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665827

RESUMO

Opportunistic diversification has allowed ferns to radiate into epiphytic niches in angiosperm dominated landscapes. However, our understanding of how ecophysiological function allowed establishment in the canopy and the potential transitionary role of the hemi-epiphytic life form remain unclear. Here, we surveyed 39 fern species in Costa Rican tropical forests to explore epiphytic trait divergence in a phylogenetic context. We examined leaf responses to water deficits in terrestrial, hemi-epiphytic and epiphytic ferns and related these findings to functional traits that regulate leaf water status. Epiphytic ferns had reduced xylem area (-63%), shorter stipe lengths (-56%), thicker laminae (+41%) and reduced stomatal density (-46%) compared to terrestrial ferns. Epiphytic ferns exhibited similar turgor loss points, higher osmotic potential at saturation and lower tissue capacitance after turgor loss than terrestrial ferns. Overall, hemi-epiphytic ferns exhibited traits that share characteristics of both terrestrial and epiphytic species. Our findings clearly demonstrate the prevalence of water conservatism in both epiphytic and hemi-epiphytic ferns, via selection for anatomical and structural traits that avoid leaf water stress. Even with likely evolutionarily constrained physiological function, adaptations for drought avoidance have allowed epiphytic ferns to successfully endure the stresses of the canopy habitat.


Assuntos
Gleiquênias/fisiologia , Folhas de Planta/fisiologia , Evolução Biológica , Costa Rica , Secas , Folhas de Planta/química , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Pressão , Água
7.
Ecology ; 102(6): e03326, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713353

RESUMO

Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vascular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species-level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes even wrong. Since the epiphytic growth blends into soil-rooted growth and vice versa, the inclusion or exclusion of particular species in the current list will sometimes be contentious. Thus, initiating a well-founded discussion was one of the motivations for compiling this database; our list represents 31,311 hypotheses on the life form of plant species, and we welcome feedback on possible omission or erroneous inclusions. We release these data into the public domain under a Creative Commons Zero license waiver. When you use the data in your publication, we request that you cite this data paper. If EpiList 1.0 is a major part of the data analyzed in your study, you may consider inviting the EpiList 1.0 core team as collaborators.


Assuntos
Lista de Checagem , Florestas , Plantas
8.
Ann Bot ; 127(3): 347-360, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33038225

RESUMO

BACKGROUND AND AIMS: The aroid vine Rhodospatha oblongata is characterized by a habitat change from terrestrial to canopy, relying on aerial roots at maturity to obtain water and nutrients from the forest soil. We hypothesize that morphophysiological acclimation occurs in roots as they grow under atmospheric conditions. These changes would guarantee the whole-plant survival of aroid vines in the new and potentially stressful habitat of the canopy. METHODS: Terrestrial and aerial roots were compared on a morphophysiological basis. Root anatomy, water balance, water absorption capacity via fluorescent tracer, and photochemical activity via chlorophyll fluorescence were measured. KEY RESULTS: While thin fasciculate roots occur on terrestrial crawling individuals, two clearly distinct aerial roots (anchor and feeder) are produced on canopy individuals, which both adhere to the host trunk. The colour of both aerial roots changes during development from red and brownish to striped and green at maturity. Colour changes are induced by the replacement of epidermis, exodermis and outer cortex by an inner layer of lignified cork on the root region exposed to the atmosphere. In the root region that is in contact with the host, covering substitutions do not occur and both exodermis and lignified cork, along with several epidermal hairs, appear. Water retention capacity was higher in green roots than in other root types. Rehydration capacity via water absorption by hairs of aerial roots was confirmed by fluorescence. Chlorophyll fluorescence data indicated low levels of photosynthetic capacity in aerial roots. CONCLUSIONS: Plants should evolve strategies to survive stress situations. The transition from soil to canopy imposes abiotic changes and potentially stressful situations on R. oblongata. We conclude that the morphophysiological changes observed represent an important strategy that permits the maintenance of aroid roots and the survival of R. oblongata in the canopy.


Assuntos
Araceae , Solo , Clima , Ecossistema , Fotossíntese , Raízes de Plantas
9.
Acta amaz ; 50(3): 260-262, jul. - set. 2020.
Artigo em Inglês | LILACS | ID: biblio-1118854

RESUMO

The first record of Vanilla labellopapillata is presented for the state of Amazonas, Brazil, in the region of Manaus, now the western limit of the species, which was previously known only from the type locality in the state of Pará. A brief description is provided and taxonomic and ecological aspects of the species are discussed in the light of this new finding. (AU)


Assuntos
Florestas , Classificação , Ecossistema Amazônico , Vanilla
10.
Ann Bot ; 124(5): 829-835, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31630154

RESUMO

BACKGROUND AND AIMS: Through careful field examination of the growth habit of the gametophytes and sporophytes of Hymenasplenium volubile across an ontogenetic series, we aim to understand better the evolution of epiphytism in this poorly understood group of ferns. METHODS: We made field observations of H. volubile sporophytes and gametophytes, and brought specimens back to the lab for microscopic analysis. In the field, sporophytes at each ontogenetic stage were photographed to document the species' growth habit. We used an existing phylogeny to optimize growth form of New World Hymenasplenium. KEY RESULTS: Young sporophytes were at first fully epiphytic and produced one or two long feeding roots that extend to the soil where they branch profusely. The feeding roots remain in contact with the soil throughout the life of the plant. Thus, H. volubile is a hemiepiphyte. While immature, gametophytes are appressed to the tree trunk, but, as their gametangia mature, their lower margin lifts upward, imparting a shelf-like appearance to the thallus. The thallus attaches to the substrate by branched rhizoids produced along the margin of the thallus in contact with the substrate. CONCLUSIONS: Hemiepiphytes are a key link in the evolution of epiphytic ferns and may act as a bridge between the forest floor and the canopy. Our finding is the first report of hemiepiphytism in Aspleniaceae, a large lineage with many epiphytic and terrestrial taxa. This work serves as an important model to understand the evolution of epiphytism in this group specifically and in ferns in general. The majority of our understanding of fern gametophyte biology is derived from laboratory studies. Our efforts represent a fundamental contribution to understanding fern gametophyte ecology in a field setting.


Assuntos
Gleiquênias , Células Germinativas Vegetais , Documentação , Florestas , Filogenia
11.
Chemosphere ; 138: 429-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26160299

RESUMO

This work presents first results on elemental characterization of a parasite plant, Struthanthus flexicaulis, collected in urban, industrial and rural areas of Rio de Janeiro state, Brazil, in order to evaluate this plant as a biomonitor of metals pollution. The results were also compared to those obtained for fine particulate matter (PM2.5) collected from filters in nearby locales. The concentrations of PM2.5 measured in the filters were between 8.0 and 18.0 µg m(-3); in some places, these measurements were higher than the 10 µg m(-3), concentration recommended by the World Health Organization (WHO). Samples of the leaves and filters with PM were submitted to acid extraction, and the extracts were employed to determine major elements (Ba, Ca, Fe, K, Mg, P and S) by ICP OES and minor elements (Cr, Cu, La, Mn, Pb, Sr, Ti and Zn) by ICP-MS. Elements' extraction efficiency was evaluated by applying the method to the certified reference materials (CMR) of tomato leaves (NIST 1573(rd)) and urban dust (NIST 1648a). The concentrations of Ca, K and Mg were higher in leaves, while Ba, Ca, K and Zn showed higher concentrations in the PM. As expected, rural sites presented lower metal content. Enrichment factor (EF) and principal component analysis with multiple linear regression analysis (PCA-MLRA) were applied to the concentrations of elements in PM2.5 and in the leaves. Anthropogenic sources could be identified with both tools, which supports the use of S. flexicaulis as a biomonitor.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Loranthaceae/química , Metais/análise , Brasil , Poeira/análise , Indústrias , Material Particulado/análise , Análise de Componente Principal
12.
Oecologia ; 106(4): 424-431, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28307439

RESUMO

Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5-0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in ∂13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.

13.
Oecologia ; 72(3): 457-460, 1987 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28311145

RESUMO

Clusia rosea Jacq. is a hemiepiphyte having Crassulacean Acid Metabolism (CAM). In its natural habitat Clusia begins its life cycle as an epiphyte and eventually becomes a rooted tree. These two stages of the life cycle of Clusia represent markedly different water regimes. Our CO2 exchange, stomatal conductance, titratable acidity, and stable carbon isotope ratio measurements indicate that Clusia has a flexible photosynthetic mode, where CO2 is fixed mostly via CAM during its epiphytic stage, when water availability is low, and via both CAM and C3 during its rooted stage.

14.
Oecologia ; 74(3): 339-346, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312470

RESUMO

Hemiepiphytic species in the genera Clusia and Ficus were investigated to study their mode of photosynthetic metabolism when growing under natural conditions. Despite growing sympatrically in many areas and having the same growth habit, some Clusia species show Crassulacean acid metabolism (CAM) whereas all species of Ficus investigated are C3. This conclusion is based on diurnal CO2 fixation patterns, diurnal stomatal conductances, diurnal titratable acidity fluctuations, and δ13C isotope ratios. Clusia minor, growing in the savannas adjacent to Barinas, Venezuela, shows all aspects of Crassulacean acid metabolism (CAM) on the basis of nocturnal gas exchange, stomatal conductance, total titratable acidity, and carbon isotope composition when measured during the dry season (February 1986). During the wet season (June 1986), the plants shifted to C3-type gas exchange with all CO2 uptake occurring during the daylight hours. The carbon isotope composition of new growth was-28 to-29‰ typical of C3 plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...